Math 005 Lecture Notes

Section 5.3-Graphing Sine and Cosine

1 Things to Note About Sine and Cosine

$$
\begin{aligned}
& \sin (-x)=-\sin (x) \text { (sine is odd) } \\
& \quad \cos (-x)=\cos (x) \text { (cosine is even) }
\end{aligned}
$$

2 Graphing $y=\sin (x)$

Consider the following chart of values:

$x=$	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	2π
$\sin x=$	0	1	0	-1	0

If we plot these points we get the following graph:

Sine is what we call a periodic function.

Definition $1 A$ periodic function is a function $y=f(x)$ where $f(x)=f(x+a)$ for some number a. The smallest such positive a is called the period of f.

Definition 2 The amplitude of a sine wave is the absolute value of half the difference between the maximum and minimum y-values of the wave:

$$
\text { Amplitude }=A=\frac{1}{2}\left|y_{\max }-y_{\min }\right|
$$

Using the fact that $y=\sin x$ is periodic, we can extend it to the whole real line and the graph looks like:

$$
y=\sin x
$$

3 Graphing $y=\cos x$

Consider the following chart of values:

$x=$	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	2π
$\cos x=$	1	0	-1	0	1

If we plot these points we get the following graph:

Cosine is also a periodic function. It is also a sine wave.
Using the fact that $y=\cos x$ is periodic, we can extend it to the whole real line and the graph looks like:

4 Properties of The Graphs

Definition 3 The amplitude of $y=A \sin x$ or $y=A \cos x$ is $|A|$.
Definition 4 The phase shift of $y=\sin (x-C)$ or $y=\cos (x-C)$ is C.
Definition 5 The period of $y=\sin (B x)$ or $y=\cos (B x)$ is $P=\frac{2 \pi}{B}$.
Remark 6 To graph $y=\sin (B x)$ you can use the following chart:

$x=$	0	$\frac{\pi}{B}$	$\frac{\pi}{B}$	$\frac{3 \pi}{2}$	$\frac{2 \pi}{B}$
$\sin (B x)=$	0	1	0	-1	0

Similarly for $y=\cos (B x)$ you can use this chart:

$x=$	0	$\frac{\pi}{2}$	$\frac{\pi}{B}$	$\frac{3 \pi}{2}$	$\frac{2 \pi}{B}$
$\cos (B x)=$	1	0	-1	0	1

5 Families of Sine and Cosine

Definition 7 The families of sine and cosine look like

$$
y=A \sin [B(x-C)]+D \text { or } y=A \cos [B(x-C)]+D
$$

and have amplitude $|A|$, period $\frac{2 \pi}{B}(B>0)$, phase shift (horizontal translation) C, and vertical translation D.

Example 8 Sketch 2 cycles (periods) of $y=2 \sin (3 x+\pi)+1$.
Solution:
Steps for solving the problem:

1. Put $y=2 \sin (3 x+\pi)$ in standard form

$$
y=2 \sin \left[3\left(x+\frac{\pi}{3}\right)\right]
$$

2. Graph $y=\sin 3 x$. It has period $\frac{2 \pi}{3}$. (This is graphed in red.)
3. Translate the graph to the left by $\frac{\pi}{3}$. (This is graphed in blue.)
4. Change the amplitude to 2. (This is graphed in green.)
5. Translate 1 unit upward. (This is graphed in purple.)

Example 9 Sketch 2 cycles (periods) of $y=-3 \cos (2 x-\pi)-1$.
Solution:
Steps for solving the problem:

1. Put $y=-3 \cos (2 x-\pi)-1$ in standard form

$$
y=-3 \cos \left[2\left(x-\frac{\pi}{2}\right)\right]-1
$$

2. Graph $y=\cos 2 x$. It has period π. (This is graphed in red.)
3. Translate the graph to the right by $\frac{\pi}{2}$. (This is graphed in blue.)
4. Change the amplitude to 3. (This is graphed in green.)
5. Since $A<0$, flip the graph over the x-axis. (This is graphed in orange.)
6. Translate 1 unit downward. (This is graphed in purple.)

Problem 10 This was going to be the problem of the day:

$$
\begin{aligned}
\text { Graph 2 cycles of } & : \\
y & =2 \sin (\pi-x)
\end{aligned}
$$

The graph looks like:

