$\begin{array}{c} \text{Math 005 Lecture Notes} \\ 10\text{-}30\text{-}2009 \end{array}$

Section 5.3 - Graphing Sine and Cosine

1 Things to Note About Sine and Cosine

 $\sin(-x) = -\sin(x) \text{ (sine is odd)} \\ \cos(-x) = \cos(x) \text{ (cosine is even)}$

2 Graphing y = sin(x)

Consider the following chart of values:

x =	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
$\sin x =$	0	1	0	-1	0

If we plot these points we get the following graph:

Sine is what we call a periodic function.

Definition 1 A periodic function is a function y = f(x) where f(x) = f(x+a) for some number a. The smallest such positive a is called the period of f.

Definition 2 The amplitude of a sine wave is the absolute value of half the difference between the maximum and minimum y-values of the wave:

$$Amplitude = A = \frac{1}{2} |y_{\max} - y_{\min}|.$$

Using the fact that $y = \sin x$ is periodic, we can extend it to the whole real line and the graph looks like:

 $y = \sin x$

3 Graphing $y = \cos x$

Consider the following chart of values:

x =	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
$\cos x =$	1	0	-1	0	1

If we plot these points we get the following graph:

Cosine is also a periodic function. It is also a sine wave.

Using the fact that $y = \cos x$ is periodic, we can extend it to the whole real line and the graph looks like:

4 Properties of The Graphs

Definition 3 The amplitude of $y = A \sin x$ or $y = A \cos x$ is |A|.

Definition 4 The phase shift of $y = \sin(x - C)$ or $y = \cos(x - C)$ is C.

Definition 5 The period of $y = \sin(Bx)$ or $y = \cos(Bx)$ is $P = \frac{2\pi}{B}$.

Remark 6 To graph $y = \sin(Bx)$ you can use the following chart:

x =	0	$\frac{\frac{\pi}{2}}{B}$	$\frac{\pi}{B}$	$\frac{\frac{3\pi}{2}}{B}$	$\frac{2\pi}{B}$
$\sin\left(Bx\right) =$	0	1	0	-1	0

Similarly for $y = \cos(Bx)$ you can use this chart:

x =	0	$\frac{\frac{\pi}{2}}{B}$	$\frac{\pi}{B}$	$\frac{\frac{3\pi}{2}}{B}$	$\frac{2\pi}{B}$
$\cos\left(Bx\right) =$	1	0	-1	0	1

5 Families of Sine and Cosine

Definition 7 The families of sine and cosine look like

$$y = A \sin [B(x - C)] + D \text{ or } y = A \cos [B(x - C)] + D,$$

and have amplitude |A|, period $\frac{2\pi}{B}$ (B > 0), phase shift (horizontal translation) C, and vertical translation D.

Example 8 Sketch 2 cycles (periods) of $y = 2\sin(3x + \pi) + 1$. Solution:

Steps for solving the problem:

1. Put $y = 2\sin(3x + \pi)$ in standard form

$$y = 2\sin\left[3\left(x + \frac{\pi}{3}\right)\right]$$

- 2. Graph $y = \sin 3x$. It has period $\frac{2\pi}{3}$. (This is graphed in red.)
- 3. Translate the graph to the left by $\frac{\pi}{3}$. (This is graphed in blue.)
- 4. Change the amplitude to 2. (This is graphed in green.)
- 5. Translate 1 unit upward. (This is graphed in purple.)

Example 9 Sketch 2 cycles (periods) of $y = -3\cos(2x - \pi) - 1$. Solution: Steps for solving the problem:

1. Put $y = -3\cos(2x - \pi) - 1$ in standard form

$$y = -3\cos\left[2\left(x - \frac{\pi}{2}\right)\right] - 1$$

- 2. Graph $y = \cos 2x$. It has period π . (This is graphed in red.)
- 3. Translate the graph to the right by $\frac{\pi}{2}$. (This is graphed in blue.)
- 4. Change the amplitude to 3. (This is graphed in green.)
- 5. Since A < 0, flip the graph over the x axis. (This is graphed in orange.)
- 6. Translate 1 unit downward. (This is graphed in purple.)

Problem 10 This was going to be the problem of the day:

Graph 2 cycles of :

$$y = 2\sin(\pi - x)$$

The graph looks like:

